When building a model of a physical phenomenon or process, scientists face an inevitable compromise between the simplicity of the model (qualitativequantitative set of variables) and its accuracy. For hundreds of years, the visual simplicity of a law testified to the genius and depth of the physical thinking of the scientist who proposed it. Currently, the desire for a deeper physical understanding of the surrounding world and newly discovered physical phenomena motivates researchers to increase the number of variables considered in a model. This direction leads to an increased probability of choosing an inaccurate or even erroneous model. This study describes a method for estimating the limit of measurement accuracy, taking into account the stage of model building in terms of storage, transmission, processing and use of information by the observer. This limit, due to the finite amount of information stored in the model, allows you to select the optimal number of variables for the best reproduction of the observed object and calculate the exact values of the threshold discrepancy between the model and the phenomenon under study in measurement theory. We consider two examples: measurement of the speed of sound and measurement of physical constants.