Functional properties of some electrical devices are expressed in the form of a dependence between parameters defining a given aspect of device duty or work circumstance (e.g. breakdown voltage): contacts distance for a circuit breaker, current (voltage for voltage limiters or reaction time), and load current for over current protection. Such characteristics are obtained experimentally, usually in a set of test series, each performed with a fixed independent parameter. Results of each series generate sets of data for estimation of statistical properties of a dependent parameter: distribution, expected value, variance and confidence interval. These statistics concern one point of the tested characteristic, so to get data of it as a whole, that would satisfy the needs for designing an electrical system, a large number of tests can be necessary. The way to reduce the number of tests may consists in: defining the characteristic not as a series of points, but as an analytical function with some specific parameters. This can be combined with aggregation of results of all tests in one set of data for estimation of statistical properties of the mentioned parameter. This paper presents an application of the above approach to tests of time-current characteristics of fuses.