To provide a simulation framework for routine neuroimaging test data, which allows for "stress testing" of deep segmentation networks against acquisition shifts that commonly occur in clinical practice for T2 weighted (T2w) fluid-attenuated inversion recovery magnetic resonance imaging protocols.
Approach:The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations. Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art multiple sclerosis lesion segmentation networks to explore a generic model function to describe the F1 score in dependence of the contrast-affecting sequence parameters echo time (TE) and inversion time (TI).Results: The differences between real and simulated images range up to 19% in gray and white matter for extreme parameter settings. For the segmentation networks under test, the F1 score dependency on TE and TI can be well described by quadratic model functions (R 2 > 0.9). The coefficients of the model functions indicate that changes of TE have more influence on the model performance than TI.
Conclusions:We show that these deviations are in the range of values as may be caused by erroneous or individual differences in relaxation times as described by literature. The coefficients of the F1 model function allow for a quantitative comparison of the influences of TE and TI. Limitations arise mainly from tissues with a low baseline signal (like cerebrospinal fluid) and when the protocol contains contrastaffecting measures that cannot be modeled due to missing information in the DICOM header.