The potential-energy surfaces for the abstraction and insertion reactions of dialkylsilylene with carbon tetrahalides (CX4) have been characterized in detail using density functional theory (B3LYP), including zero-point corrections. Four CX4 species, CF4, CCl(4), CBr4, and CI(4), were chosen as model reactants. The theoretical investigations described herein suggest that of the three possible reaction paths, the one-halogen-atom abstraction (X abstraction), the one-CX3-group abstraction (CX3 abstraction), and the insertion reaction, the X-abstraction reaction is the most favorable, with a very low activation energy. However, the insertion reaction can lead to the thermodynamically stable products. Moreover, for a given stable dialkylsilylene, the chemical reactivity has been found to increase in the order CF4<