Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study is an overview of the current and future trajectory, as well as the impact of the novel Coronavirus (COVID-19) in the world and selected countries including the state of Kuwait. The selected countries were divided into two groups: Group A (China, Switzerland, and Ireland) and Group B (USA, Brazil, and India) based on their outbreak containment of this virus. Then, the actual data for each country were fitted to a regression model utilizing the excel solver software to assess the current and future trajectory of novel COVID-19 and its impact. In addition, the data were fitted using the Susceptible–Infected–Recovered (SIR) Model. The Group A trajectory showed an “S” shape trend that suited a logistic function with r2 > 0.97, which is an indication of the outbreak control. The SIR models for the countries in this group showed that they passed the expected 99% end of pandemic dates. Group B, however, exhibited a continuous increase of the total COVID-19 new cases, that best suited an exponential growth model with r2 > 0.97, which meant that the outbreak is still uncontrolled. The SIR models for the countries in this group showed that they are still relatively far away from reaching the expected 97% end of pandemic dates. The maximum death percentage varied from 3.3% (India) to 7.2% with USA recording the highest death percentage, which is virtually equal to the maximum death percentage of the world (7.3%). The power of the exponential model determines the severity of the country’s trajectory that ranged from 11 to 19 with the USA and Brazil having the highest values. The maximum impact of this COVID-19 pandemic occurred during the uncontrolled stage (2), which mainly depended on the deceptive stage (1). Further, some novel potential containment strategies are discussed. Results from both models showed that the Group A countries contained the outbreak, whereas the Group B countries still have not reached this stage yet. Early measures and containment strategies are imperative in suppressing the spread of COVID-19.
This study is an overview of the current and future trajectory, as well as the impact of the novel Coronavirus (COVID-19) in the world and selected countries including the state of Kuwait. The selected countries were divided into two groups: Group A (China, Switzerland, and Ireland) and Group B (USA, Brazil, and India) based on their outbreak containment of this virus. Then, the actual data for each country were fitted to a regression model utilizing the excel solver software to assess the current and future trajectory of novel COVID-19 and its impact. In addition, the data were fitted using the Susceptible–Infected–Recovered (SIR) Model. The Group A trajectory showed an “S” shape trend that suited a logistic function with r2 > 0.97, which is an indication of the outbreak control. The SIR models for the countries in this group showed that they passed the expected 99% end of pandemic dates. Group B, however, exhibited a continuous increase of the total COVID-19 new cases, that best suited an exponential growth model with r2 > 0.97, which meant that the outbreak is still uncontrolled. The SIR models for the countries in this group showed that they are still relatively far away from reaching the expected 97% end of pandemic dates. The maximum death percentage varied from 3.3% (India) to 7.2% with USA recording the highest death percentage, which is virtually equal to the maximum death percentage of the world (7.3%). The power of the exponential model determines the severity of the country’s trajectory that ranged from 11 to 19 with the USA and Brazil having the highest values. The maximum impact of this COVID-19 pandemic occurred during the uncontrolled stage (2), which mainly depended on the deceptive stage (1). Further, some novel potential containment strategies are discussed. Results from both models showed that the Group A countries contained the outbreak, whereas the Group B countries still have not reached this stage yet. Early measures and containment strategies are imperative in suppressing the spread of COVID-19.
A novel severe viral pneumonia emerged in Wuhan city, China, in December 2019. The spike glycoprotein of the SARS-CoV-2 plays a crucial role in the viral entry to the host cell and eliciting a strong response for antibody-mediated neutralization in mice. Caveolins 1,2 are scaffolding proteins dovetailed as a co-stimulatory signal essential for T-cell receptor and activation. Aminopeptidase is a membrane protein acting as a receptor for human coronavirus within the S1 subunit of the spike glycoprotein. Vaccines for COVID-19 have become a priority for predisposition against the outbreak, so that our study aimed to find interaction sites between SP of SARS-CoV-2 and CAV1, CAV2, and AMPN. Methods: Amino acids motif search was employed to predict the possible CAV1, CAV2, and AMPN related interaction domains in the SARS-CoV-2 SP In silico analysis. Results: Interactions between proteins revealed 5 and16 residues. ZN ligand binding site is matched between AMPN and SARS- CoV-2 SP. HLA-A*74:01 allele is the best CTL epitope for SP. We identified seven B-cell epitopes specifically for SARS-CoV-2 SP. Conclusions: SARS-CoV-2 SP binding sites might be compatible with AMPN ligand binding sites. The limit score was detected for ligand binding sites of CAV1 and CAV2. Our findings might be critical for the further substantial study of vaccine production strategy.
Today’s crisis covid-19 that’s going to rule the world by vanishing all our achievement, if not stopped. We are emerging leader in world of Internet of Things which can be proved as our weapon in this fight. Here i came to a result after doing study of data of different countries related to covid-19 cases and deaths is that the main cause of such a widespread is negligence of people. As by the use of IoT devices we can detect, monitor, track and reduce spread which lead to readmissions rate in hospital ultimately we lead this battle. As many researchers of different country contributing their work in field such as reducing costs, smart monitoring systems, identification of suspects, data unification, symptoms monitoring and this list goes on , their research also help hospital management and police management system across the globe. After going through different research papers, articles, blogs, and data provided by WHO, and also monitor through our capabilities in field of IoT, I tried to combine all what IoT can perform against such miserable condition due to Corona virus. As I go through different measures that are in use only in particular countries which must globalised in this fight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.