Characterization of matrix metalloprotease (MMP) activities is of increasing interest for cancer prognosis or treatment follow-up. Indeed, MMP-1, -2 and -9 are widely involved in the growth of many tumors and progression steps such as angiogenesis, invasion, and metastasis. Fluorogenic peptide MMP substrates were previously synthesized with the aim of detecting MMP activities. One of their drawbacks is their limited solubility in biological media. Grafting them onto a solid support represented a novel way to yield efficient analysis devices whilst at the same time decreasing the quantities of peptides used. Novel peptide arrays were designed in order to detect MMP activities in biological fluids. Silicon plates were used as the solid support for the design of these novel tools. These were functionalized by organic self-assembled monolayers (SAMs) on which fluorogenic peptides were covalently coupled. SAM and peptide grafting on silicon plates were confirmed by epifluorescence, ellipsometry, and FT-IR analysis. Enzymatic assays were monitored by fluorescence spectrometry and showed that immobilized linear peptides were recognized and cleaved by MMPs.