Abstract:Data limitation and sparsity are considered the main source of non-uniqueness and ill-posedness in elastic property prediction on seismic data using Deep Learning (DL). The ill-posed regression problem can be solved by conducting adequate pre-processing steps through data augmentation, feature engineering and feature selection. In this paper, we develop a novel technique of reshaping the input data into various multi-dimensional shapes before using the data as an input for the DL model. This strategy can incre… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.