Congenital heart disease occurs in approximately 1% of all live births and includes structural abnormalities of the heart valves. However, this statistic underestimates congenital valve lesions, such as bicuspic aortic valve (BAV) and mitral valve prolapse (MVP), that typically become apparent later in life as progressive valve dysfunction and disease. At present, the standard treatment for valve disease is replacement, and approximately 95,000 surgical procedures are performed each year in the United States. The most common forms of congenital valve disease include abnormal valve cusp morphogenesis, as in the case of BAV, or defects in extracellular matrix (ECM) organization and homeostasis, as occurs in MVP. The etiology of these common valve diseases is largely unknown. However, the study of murine and avian model systems, along with human genetic linkage studies, have led to the identification of genes and regulatory processes that contribute to valve structural malformations and disease. This review focuses on the current understanding and therapeutic implications of molecular regulatory pathways that control valve development and contribute to valve disease.