Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by the osteosclerosis of tubular bones and the formation of cemento-osseous lesions in mandibles. Although genetic mutations for GDD have been identified in the ANO5/ TMEM16E gene, the cellular and molecular mechanisms behind the pathogenesis of GDD remain unclear. Here, we generated the first knock-in mouse model for GDD with the expression of human mutation p.Cys360Tyr in ANO5. Homozygous Ano5 knock-in mice (Ano5 KI/KI ) replicated GDD-like skeletal features, including massive jawbones, bowing tibia, bone fragility, sclerosis, and cortical thickening of the femoral and tibial diaphysis. Serum alkaline phosphatase (ALP) levels were elevated in Ano5 KI/KI mice as in GDD patients with p.Cys360Tyr mutation. Calvaria-derived Ano5 KI/KI osteoblast cultures showed increased osteoblastogenesis, including hypermineralized bone matrix and enhanced bone formation-related factors expression. Interestingly, Ano5 KI/KI bone marrow-derived macrophage cultures showed decreased osteoclastogenesis, and Ano5 KI/KI osteoclasts exhibited disrupted actin ring formation, which may be associated with some signaling pathways. In conclusion, this new mouse model may facilitate elucidation of the pathogenesis of GDD and shed more light on its treatment.