The early detection and prognosis of cancers require sensitive and accurate detection methods; with developments in medicine, electrochemical biosensors have been developed that can meet these clinical needs. However, the composition of biological samples represented by serum is complex; when substances undergo non-specific adsorption to an electrode and cause fouling, the sensitivity and accuracy of the electrochemical sensor are affected. In order to reduce the effects of fouling on electrochemical sensors, a variety of anti-fouling materials and methods have been developed, and enormous progress has been made over the past few decades. Herein, the recent advances in anti-fouling materials and strategies for using electrochemical sensors for tumor markers are reviewed; we focus on new anti-fouling methods that separate the immunorecognition and signal readout platforms.