2021
DOI: 10.1002/jnm.2972
|View full text |Cite
|
Sign up to set email alerts
|

Novel induced charge electrokinetic based microfluidic design for trapping of micro and nanoparticles: Numerical simulation approach

Abstract: ICEK phenomena have recently been used for separating particles. The most critical issue in separating the nanoparticles (e.g., exosome, viruses, or bacteria) in complex biofluids is implementing a two-step procedure (I) trapping the larger particles (e.g., red blood cells) from the blood and (II) trapping the nanoparticles. The purpose of this paper is to propose a design framework for the separation of considered particles in one chip. The model considered evaluating the feasibility of two-step micro and nan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 58 publications
0
2
0
Order By: Relevance
“…Since this model aimed to trap biological particles, Equation 16 was used to model Joule‐heating [47–50], where h, C p , T out , and σ are heat transfer coefficient, specific heat capacity, outdoor temperature (300 K), and fluid conductivity, respectively. ρCptrueU.trueTgoodbreak=.()ktrueTgoodbreak+()σtrueE.trueE$$\begin{equation}\rho {C_p}\vec U.\nabla \vec T = \nabla .\left( {k\nabla \vec T} \right) + \left( {\sigma \vec E} \right).\vec E\end{equation}$$ n.()ktrueTgoodbreak=h()ToutT0.16ematchannelwalls$$\begin{equation}n.\left( {k\nabla \vec T} \right) = h\left( {{T_{out}} - T} \right)\,{\rm{at\ channel\ walls}}\end{equation}$$ normalTbadbreak=3000.33emnormalK0.33emat0.33eminlet$$\begin{equation}{\rm{T = 300\ K\ at\ inlet}}\end{equation}$$ n.()ktrueTgoodbreak=00.33ematobstacleswalls$$\begin{equation}n.\left( {k\nabla \vec T} \right) = 0\ {\rm{at obstacles\ walls}}\end{equation}$$…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Since this model aimed to trap biological particles, Equation 16 was used to model Joule‐heating [47–50], where h, C p , T out , and σ are heat transfer coefficient, specific heat capacity, outdoor temperature (300 K), and fluid conductivity, respectively. ρCptrueU.trueTgoodbreak=.()ktrueTgoodbreak+()σtrueE.trueE$$\begin{equation}\rho {C_p}\vec U.\nabla \vec T = \nabla .\left( {k\nabla \vec T} \right) + \left( {\sigma \vec E} \right).\vec E\end{equation}$$ n.()ktrueTgoodbreak=h()ToutT0.16ematchannelwalls$$\begin{equation}n.\left( {k\nabla \vec T} \right) = h\left( {{T_{out}} - T} \right)\,{\rm{at\ channel\ walls}}\end{equation}$$ normalTbadbreak=3000.33emnormalK0.33emat0.33eminlet$$\begin{equation}{\rm{T = 300\ K\ at\ inlet}}\end{equation}$$ n.()ktrueTgoodbreak=00.33ematobstacleswalls$$\begin{equation}n.\left( {k\nabla \vec T} \right) = 0\ {\rm{at obstacles\ walls}}\end{equation}$$…”
Section: Methodsmentioning
confidence: 99%
“…Since this model aimed to trap biological particles, Equation 16 was used to model Joule-heating [47][48][49][50], where h, C p , T out , and σ are heat transfer coefficient, specific heat capacity, outdoor temperature (300 K), and fluid conductivity, respectively.…”
Section: Joule Heatingmentioning
confidence: 99%