“…The development of the wear-resistant cutting tools allowing for a high-speed processing of structural materials (titanium alloys, austenite corrosion-resistant steels, heat-resistant alloys, etc.) is one promising application of the fine-grained hard alloys based on tungsten carbide [1,3,5,6,[9][10][11][12]. The fine-grained hard alloys-based tungsten carbide is interesting for applications in dies, roll drums, and engineering products, which are imposed to increased requirements of strength and wear resistance due to a successful combination of a high melting point, high hardness, fracture toughness (see Appendix A, Table A1, ), low friction coefficient, and high corrosion resistance.…”