Regulation of blood vessel permeability is essential for the homeostasis of peripheral tissues. This regulation controls the trafficking of plasma contents, including water, vitamins, ions, hormones, cytokines, amyloids, lipoproteins, carrier proteins, and immunoglobulins. The properties of blood vessels vary among tissues based on their structural differences: continuous, fenestrated, or sinusoidal. These three types of blood vessels have different charge and size barrier properties. The anionic luminal glycocalyx layer on endothelial cells establishes the “charge barrier” that repels the attachment of negatively charged blood cells and plasma molecules. In contrast, the “size barrier” of blood vessels largely relies on the interendothelial junctions (IEJs) between endothelial cells, which define the paracellular permeability. As in most peripheral tissues, blood capillaries in the skin are composed of continuous and/or fenestrated blood vessels that have relatively tighter IEJs compared to those in the internal organs. Small vesicles in the capillary endothelium were discovered in the 1950s, and studies have since confirmed that blood endothelial cells transport the plasma contents by endocytosis and subsequent transcytosis and exocytosis—this process is called transcellular permeability. The permeability of blood vessels is highly variable as a result of intrinsic and extrinsic factors. It is significantly elevated upon tissue inflammations as a result of disabled IEJs and increased paracellular permeability due to inflammatory mediators. An increase in transcellular permeability during inflammation has also been postulated. Here, we provide an overview of the general properties of vascular permeability based on our recent observations of murine skin inflammation models, and we discuss its physiological significance in peripheral homeostasis.