ObjectiveTo explore the effects of baseline impedance (R) and power (P) on radiofrequency ablation (RFA) lesion characteristics and their correlation with steam pops using ThermoCool SmartTouch-SF (STSF) catheters in the porcine heart.MethodA porcine left ventricle was submerged in 37°C saline ex vivo, and the experiment was performed with various P (P = 30, 40, 50, and 60 W) and multiple R loads (R = 80–100, 100–140, 140–180, and 180–220 Ω) to reach the target ablation index (AI; AI = 350, 450, and 500) or reach the target ablation time using a fixed contact force (CF; CF = 10–15 g) and the same saline irrigation (30 W/8 ml/min or 40–60 W/15 ml/min), repeated five times under each condition.ResultsThe surface diameter, maximum diameter, depth, and volume of the lesions were strongly correlated with the AI (P = 40 W, R = 100–140 Ω, CF = 10–15 g) (r = 0.5412; r = 0.7889; r = 0.9366; and r = 0.913, respectively; all p < 0.05). As the value of R increased, the maximum diameter, depth, and volume of the lesions significantly increased (AI = 350, P = 30 W). Moreover, the higher the baseline value of R, the greater the absolute value of the R decrease (r = 0.9035, p < 0.05, Y = 0.2759 × X – 18.33). Under high power and high impedance, the occurrence rate of steam pops was high (P = 60 W, R = 180–220 Ω, AI when a steam pop occurred: 480 ± 26.5, ablation time: 11.29 ± 1.04 s).ConclusionRadiofrequency catheter ablation (RFCA) in power-controlled mode resulted in various lesion characteristics that were related to diverse baseline Rs. In addition, the incidence of steam pops was strongly correlated with high baseline R and high P.