We scrutinise the widely studied minimal scotogenic model of dark matter and radiative neutrino mass from the requirement of a strong first order electroweak phase transition (EWPT) and observable gravitational waves at future planned space based experiments. The scalar DM scenario is similar to inert scalar doublet extension of standard model where a strong first order EWPT favours the low mass regime of DM, a narrow fine tuned region currently allowed from collider and direct detection bounds. In the fermion DM scenario, we get newer region of parameter space which favours strong first order EWPT as the restriction on mass ordering within inert scalar doublet gets relaxed. While such leptophilic fermion DM remains safe from stringent direct detection bounds, newly allowed low mass regime of charged scalar can leave tantalising signatures at colliders. While we get such new region of parameter space satisfying DM relic, strong first order EWPT with detectable gravitational waves, light neutrino mass and other relevant constraints, we also improve upon previous analysis in similar model by incorporating appropriate resummation effects in effective finite temperature potential.