District heating systems play a pivotal role in providing efficient and sustainable heating solutions for urban areas. In this sense, district heating systems that use geothermal resources have been gaining prominence in recent years, due to the non-intermittent nature of their application, among many other reasons. The present study investigates the thermal performance of novel coaxial pipes in comparison to conventional pipes within district heating distribution networks supplied by geothermal energy. Through experimental simulation and analysis, key thermal parameters such as heat transfer efficiency, thermal losses, and overall system effectiveness are evaluated through laboratory tests developed on a scale model. Experimental analysis concludes that, at a laboratory scale, heat energy efficiency can be improved by around 37% regarding the traditional geothermal distribution network. This improvement translates into a significant economic and environmental impact that has a direct influence on the viability of this type of system in different application scenarios. The results highlight the potential benefits of coaxial pipe designs in enhancing heat transfer efficiency and minimizing thermal losses, thus offering insights for optimizing geothermal district heating infrastructure for improved energy efficiency and sustainability. The novelty of this study lies in the innovative design and experimental validation of coaxial pipes, which demonstrate a 37% improvement in heat energy efficiency over conventional pipe designs in geothermal district heating systems, offering a breakthrough in optimizing heat transfer and minimizing thermal losses.