The prediction of drug combinations is of great clinical significance. In many diseases, such as high blood pressure, diabetes, and stomach ulcers, the simultaneous use of two or more drugs has shown clear efficacy. It has greatly reduced the progression of drug resistance. This review presents the latest applications of methods for predicting the effects of drug combinations and the bioactivity databases commonly used in drug combination prediction. These studies have played a significant role in developing precision therapy. We first describe the concept of synergy. we study various publicly available databases for drug combination prediction tasks. Next, we introduce five algorithms applied to drug combinatorial prediction, which include traditional machine learning methods, deep learning methods, mathematical methods, systems biology methods and search algorithms. In the end, we sum up the difficulties encountered in prediction models.