Through the use of an electric discharge machine, this study performed the electrical spark discharge method in deionised water under normal temperature and pressure for Cu nanocolloid (CuNC) preparation. The CuNCs had a zeta potential of 12.3 mV, indicating poor suspension stability. The suspension stability was effectively increased (zeta potential 32.5 mV) through the addition of polyvinyl alcohol (PVA) to form PVA-containing CuNCs PVA/CuNCs. Next, the following pulse-width modulation (Ton:Toff) parameters were tested to determine the optimal setting for PVA/CuNC preparation: 10:10, 30:30, 50:50, 70:70 and 90:90 µs. The optimal preparation parameter was then determined according to the absorbance, zeta potential and size distribution results. Finally, the surface properties and crystal structure of the PVA/CuNCs were characterised through transmission electron microscopy (TEM) and X-ray diffraction (XRD). When the Ton:Toff was set to 30:30 µs, preparation efficiency was optimal, as was suspension stability, as indicated by the absorbance value (0.534), zeta potential (32.5 mV) and size distribution (85.47 nm). Transmission electron microscopy revealed that Cu nanoparticles that were more dispersed in the PVA/CuNCs had a diameter smaller than 10 nm and a crystal line width of 0.2028 nm. X-ray diffraction showed that the PVA/CuNCs contained intact Cu crystal structures.