Introduction
There is no evidence on screw diameter with regards to tunnel size in anterior cruciate ligament reconstruction (ACLR) using hybrid fixation devices. The hypothesis was that an undersized tunnel coverage by the tibial screw leads to subsequent tunnel enlargement in ACLR in hybrid fixation technique.
Methods
In a retrospective case series, radiographs and clinical scores of 103 patients who underwent primary hamstring tendon ACLR with a hybrid fixation technique at the tibial site (interference screw and suspensory fixation) were obtained. Tunnel diameters in the frontal and sagittal planes were measured on radiographs 6 weeks and 12 months postoperatively. Tunnel enlargement of more than 10% between the two periods was defined as tunnel widening. Tunnel coverage ratio was calculated as the tunnel diameter covered by the screw in percentage.
Results
Overall, tunnel widening 12 months postoperatively was 23.1 ± 17.1% and 24.2 ± 18.2% in the frontal and sagittal plane, respectively. Linear regression analysis revealed the tunnel coverage ratio to be a negative predicting risk factor for tunnel widening (p = 0.001). The ROC curve analysis provided an ideal cut-off for tunnel enlargement of > 10% at a tunnel coverage ratio of 70% (sensitivity 60%, specificity 81%, AUC 75%, p < 0.001). Patients (n = 53/103) with a tunnel coverage ratio of < 70% showed significantly higher tibial tunnel enlargement of 15% in the frontal and sagittal planes. The binary logistic regression showed a significant OR of 6.9 (p = 0.02) for tunnel widening > 10% in the frontal plane if the tunnel coverage ratio was < 70% (sagittal plane: OR 14.7, p = 0.001). Clinical scores did not correlate to tunnel widening.
Conclusion
Tibial tunnel widening was affected by the tunnel diameter coverage ratio. To minimize the likelihood of disadvantageous tunnel expansion—which is of importance in case of revision surgery—an interference screw should not undercut the tunnel diameter by more than 1 mm.