Sediment from a tidal flat at Wedderwarden, near the mouth of the Weser estuary, northern Germany, was amended with elemental sulfur, and concentrations of metabolic end products were monitored. The production of both sulfate and sulfide was consistent with disproportionation as the most important fate of the added elemental sulfur. A population of bacteria conducting active elemental sulfur disproportionation was also enriched from the sediment. In the enrichments, containing both elemental sulfur and Fe oxides as a sulfide 'scrub', sulfide and sulfate were produced in a ratio of IS/l, somewhat lower than the predicted ratio of 2/l. The mismatch between predicted and observed production ratios is explained by the channelling of electrons into autotrophic or mixotrophic CO, fixation rather than sulfide formation. The production of organic carbon, in the correct amount to explain the observed sulfide to sulfate production ratio, was verified by organic carbon analysis. Finally, rates of sulfate reduction were identical in the elemental sulfur amended sediment, and in control sediment with no added sulfur. Hence, the heterotrophic bacterial community was completely unaffected by an active metabolism conducting elemental sulfur disproportionation.