Most tandem mass spectrometry fragmentation spectra have small calibration errors that can lead to suboptimal interpretation and annotation. We developed SpectiCal, a software tool that can read mzML files from data-dependent acquisition proteomics experiments in parallel, compute m/z calibrations for each file prior to identification analysis based on known low-mass ions, and produce information about frequently observed peaks and their explanations. Using calibration coefficients, the data can be corrected to generate new calibrated mzML files. SpectiCal was tested using five public data sets, creating a table of commonly observed low-mass ions and their identifications. Information about the calibration and individual peaks is written in PDF and TSV files. This includes information for each peak, such as the number of runs in which it appears, the percentage of spectra in which it appears, and a plot of the aggregated region surrounding each peak. SpectiCal can be used to compute MS run calibrations, examine MS runs for artifacts that might hinder downstream analysis, and generate tables of detected low-mass ions for further analysis. SpectiCal is freely available at https://github.com/PlantProteomes/ SpectiCal.