With the rapid increase in the usage of IoT devices, the cyber threats are increasing among the communication between the IoT devices. The challenges related to security surmounts with increasing number of IoT devices due to its functionality and heterogeneity. In recent times, deep learning algorithms are offered to resolve the constraints associated with detection of malicious devices among the networks. In this paper, we utilize deep belief network (DBN) to resolve the problems associated with identification, detection of anomaly IoT devices. Several features are extracted initially to find the malicious devices in the IoT device network that includes storage, computational resources and high dimensional features. These features extracted from the network traffic assists in achieving the classification of devices by DBN. The simulation is performed to test the accuracy and detection rate of the proposed deep learning classifier. The results show that the proposed method is effective in implementing the detection of malicious nodes in the network than existing methods.