The use of population encoding models has come to dominate the study of human visual neuroscience, serving as a primary tool for making inferences about neural code changes based on indirect measurements. A popular approach in computational neuroimaging is to use such models to obtain estimates of neural population responses via inverted encoding modeling. Recent research suggests that this approach may be prone to identifiability problems, with multiple mechanisms of encoding change producing similar changes in the estimated population responses. Psychophysical data might be able to provide additional constraints to infer the encoding change mechanism underlying some behavior of interest. However, computational work aimed at determining to what extent different mechanisms can be differentiated using psychophysics is lacking. Here, we used simulation to explore exactly which of a number of changes in neural population codes could be differentiated from observed changes in psychophysical thresholds. Eight mechanisms of encoding change were under study, chosen because they have been proposed in the previous literature as mechanisms for improved task performance (e.g., due to attention or learning): specific and nonspecific gain, specific and nonspecific tuning, specific suppression, specific suppression plus gain, and inward and outward tuning shifts. We simulated psychophysical thresholds as a function of both external noise (TvN curves) or stimulus value (TvS curves) for a number of variations of each one of the models. With the exception of specific gain and specific tuning, all studied mechanisms produced qualitatively different patterns of change in the TvN and TvS curves, suggesting that psychophysical studies can be used as a complement to inverted encoding modeling, and provide strong constraints on inferences based on the latter. We use our results to provide recommendations for interested researchers and to re-interpret previous psychophysical data in terms of mechanisms of encoding change.