The electrical penetration graphing or electropenetrography (EPG) technique is essential for understanding interactions of hemipteran insects with their host plants. Typically, 10-12.5 μm diameter gold wire is used as the tethering material in EPG studies. This wire was originally chosen based on suitability for aphids, but application of the EPG technique to other insects necessitates testing of alternative tethering materials that permit natural foraging and probing behavior. Whiteflies are one group for which EPG studies are increasing, with most researchers using 10 or 12.5 μm diameter gold wire even though these insects are smaller than aphids and very different in mobility. However, 2.5 μm diameter Wollaston process platinum wire has been used for a subset of EPG studies and seems to permit more natural movement and feeding behaviors. Here, we compared EPG variables derived from recordings of the sweet potato whitefly (Bemisia tabaci) tethered with 12.5 μm diameter gold wire or 2.5 μm diameter platinum wire. On a suitable host, gold-tethered whiteflies had reduced phloem phases, which are indicative of host plant acceptance, compared to platinum-tethered whiteflies. When we included a treatment known to reduce plant quality (methyl jasmonate application), platinum-tethered whiteflies exhibited expected reductions in EPG variables related to host acceptance, while gold-tethered whiteflies either had no response, or the opposite response. Our results indicate that tethering material strongly influences the outcome of EPG experiments, with important consequences for evaluations of host plant resistance, putative instances of plant virus manipulation, and feeding variables associated with virus transmission.