The synthesis of the Rhodococcus erythropolis siderophores heterobactins A and B, and the structurally related Nocardia heterobactin, is described. Two approaches for the assembly of these asymmetric ligand donor chelators are explored. In the first approach, a scheme predicated on the biosynthesis of the Paracoccus denitrificans siderophore, parabactin, is employed. In this approach, the central donor synthon is added last. In the second scheme, the central donor and the terminal 2,3-dihydroxybenzoyl fragment are first fixed to the ligand’s D-ornithine backbone. This is followed by condensation with the cyclic ornithine hydroxamate glycine segment. The schemes offer a flexible approach to other heterobactins. Job’s plots suggest that heterobactin A and Nocardia heterobactin form 1:1 ligand/metal complexes, while heterobactin B forms a 3:2 ligand/metal complex.