3,3′,5,5′‐Tetra‐tert‐butyl‐2′‐sulfanyl[1,1′‐biphenyl]‐2‐ol (H2[tBu4OS]) was prepared in 24 % yield overall from the analogous biphenol using standard techniques. Addition of H2[tBu4OS] to Mo(NAr)(CHCMe2Ph)(2,5‐dimethylpyrrolide)2 led to formation of Mo(NAr)(CHCMe2Ph)[tBu4OS], which was trapped with PMe3 to give Mo(NAr)(CHCMe2Ph)[tBu4OS](PMe3) (1(PMe3)). An X‐ray crystallographic study of 1(PMe3) revealed that two structurally distinct square pyramidal molecules are present in which the alkylidene ligand occupies the apical position in each. Both 1(PMe3)A and 1(PMe3)B are disordered. Mo(NAd)(CHCMe2Ph)(tBu4OS)(PMe3) (2(PMe3); Ad=1‐adamantyl) and W(NAr)(CHCMe2Ph)(tBu4OS)(PMe3) (3(PMe3)) were prepared using analogous approaches. 1(PMe3) reacts with ethylene (1 atm) in benzene within 45 minutes to give an ethylene complex Mo(NAr)(tBu4OS)(C2H4) (4) that is isolable and relatively stable toward loss of ethylene below 60 °C. An X‐ray study shows that the bond distances and angles for the ethylene ligand in 4 are like those found for bisalkoxide ethylene complexes of the same general type. Complex 1(PMe3) in the presence of one equivalent of B(C6F5)3 catalyzes the homocoupling of 1‐decene, allyltrimethylsilane, and allylboronic acid pinacol ester at ambient temperature. 1(PMe3), 2(PMe3), and 3(PMe3) all catalyze the ROMP of rac‐endo,exo‐5,6‐dicarbomethoxynorbornene (rac‐DCMNBE) in the presence of B(C6F5)3, but the polyDCMNBE that is formed has a random structure.