The present study was conducted to evaluate the response of 29 Salmonella isolates to exposure to thermal (60°C for 2 min), acidic (pH 2.9 for 30 min), and alkaline (pH 11 for 60 min) treatments and investigate the susceptibility of the isolates and their biofilms to disinfectants. The reductions of Salmonella isolates populations subjected to each treatment were analyzed according to their isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability. Median reductions for all of Salmonella isolates populations after thermal, acidic, and alkaline treatments were 1.8, 2.1, and 0.7 log CFU/ml, respectively. The isolates behavior under stress conditions were not related to their isolation source, serotype, or biofilm formation ability. The median reduction after alkaline treatment in non‐MDR (multidrug‐ resistant) isolates populations was significantly (p < .05) higher than MDR isolates. The median reduction in biofilms of moderate biofilm producers by disinfectants was significantly (p < .05) higher than that of strong biofilm producers. In conclusion, Salmonella isolates showed the highest susceptibility to acidic treatment and MDR isolates were more resistant to alkaline treatment than non‐MDR ones. The current study also revealed that the strong biofilm producer isolates were more resistant to disinfectants than moderate biofilm producers. This study facilitated the understanding of the relationship between Salmonella characteristics (isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability) and its susceptibility to thermal, acidic, and alkaline treatments and disinfectants. The findings are helpful for the prevention and control of Salmonella.