This article addresses design modification to a flat-blade static mixer to enhance mixing performance. The static mixer elements used in this work consist of four blades with curvature made to intensify turbulent-like flow, while reducing the pressure drop. The blades were mounted on a cylindrical housing with 45 rotation relative to the axial direction. The mixer assembly was used in three different arrangements of 8, 10, and 14 elements for a range of Reynolds number between 600 and 7,000. The coefficient of variance (COV) of samples was used to measure the mixing quality. The curved-blade mixer provides considerable improvement in mixing quality compared with the flat-blade mixer and comparable to the SMX mixer. Compared with the flat-blade static mixer, the new design reduces the COV by up to about 50%. This effect is more pronounced when the number of mixing elements increases. Furthermore, the friction factors for the modified mixer, obtained at a wide range of Reynolds number, were apparently smaller than those for the flat-blade, SMX, and SMV mixers. The correlation presented for the friction factor, when all mixer arrangements and aspect ratios were considered, supports the experimental data with ±15% deviation.