Recognizing the pivotal role of circadian rhythm in the human aging process and its scalability through wearables, we introduce CosinorAge, a digital biomarker of aging developed from wearable-derived circadian rhythmicity from 80,000 midlife and older adults in the UK and US. A one-year increase in CosinorAge corresponded to 8–12% higher all-cause and cause-specific mortality risks and 3–14% increased prospective incidences of age-related diseases. CosinorAge also captured a non-linear decline in resilience and physical functioning, evidenced by an 8–33% reduction in self-rated health and a 3–23% decline in health-related quality of life score, adjusting for covariates and multiple testing. The associations were robust in sensitivity analyses and external validation using an independent cohort from a disparate geographical region using a different wearable device. Moreover, we illustrated a heterogeneous impact of circadian parameters associated with biological aging, with young (<45 years) and fast agers experiencing a substantially delayed acrophase with a 25-minute difference in peak timing compared to slow agers, diminishing to a 7-minute difference in older adults (>65 years). We demonstrated a significant enhancement in the predictive performance when integrating circadian rhythmicity in the estimation of biological aging over physical activity. Our findings underscore CosinorAge’s potential as a scalable, economic, and digital solution for promoting healthy longevity, elucidating the critical and multifaceted circadian rhythmicity in aging processes. Consequently, our research contributes to advancing preventive measures in digital medicine.