In this work, five nanocrystalline first transition-metal (Ti, Mn, Co, Ni and Zn) oxide nanofibers were prepared by electrospinning and controlled calcination. The morphology, crystal structure, pore size distribution and specific surface area were systematically studied by scanning electron microscope (SEM), transmission electron microscope (TEM), surface and pore analysis, and thermo gravimetric analyzer (TGA). The results reveal that the obtained nanofibers have a continuously twisted three-dimensional scaffold structure and are composed of neat nanocrystals with a necklace-like arrangement. All the samples possess high specific surface areas, which follow the order of NiO nanofiber (393.645 m 2 /g) > TiO 2 nanofiber (121.445 m 2 /g) > ZnO nanofiber (57.219 m 2 /g) > Co 3 O 4 nanofiber (52.717 m 2 /g) > Mn 2 O 3 nanofiber (18.600 m 2 /g). Moreover, the photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated in detail by employing the five kinds of metal oxide nanofibers as photocatalysts under ultraviolet (UV) irradiation separately. The results show that ZnO, TiO 2 and NiO nanofibers exhibit excellent photocatalytic efficiency and high cycling ability to MB, which may be ascribed to unique porous structures and the highly efficient separation of photogenerated electron-hole pairs. In brief, this paper aims to provide a feasible approach to achieve five first transition-metal oxide nanofibers with excellent performance, which is important for practical applications.