The ability of inorganic antibacterial agents like metal oxides and nanoscale inorganic materials to inhibit bacterial growth rates has yet to receive much research attention. In this study, CaCO3-ZnO/Y-zeolite nanocomposites were created utilizing coprecipitation and impregnation techniques with Ca(CH3COO)2, Zn(CH3COO)2 2H2O, Y-zeolite precursors. Physical and chemical characteristics of nanocomposites have been investigated using XRD, FTIR, and SEM-EDX characterizations. The agar-well diffusion method tested the substance for antibacterial activity against gram-positive and gram-negative bacteria. Nanocomposites have a crystal size range of 35.46-36.53 nm and a crystallinity of 35-37 %, according to the results of XRD analysis. The carbonate groups are visible in FTIR data at wave numbers 1433, 875, and 712 cm-1. The Zn-O absorption band was verified at wave numbers 600-400 cm-1. The Y-zeolite absorption bands at wave numbers 1012-997 cm-1 and 745-746 cm-1 were confirmed. The particle morphology is cube-shaped with irregular sizes. The EDX result showed that the composition consists of 35.92 % calcium, 1.68 % zinc, 44.81 % oxygen, and 13.79 % carbon as elements. With the addition of 2.5 % Y-zeolite, the antibacterial activity of nanocomposites showed the best results, with an inhibition zone diameter of 7.62 mm against Escherichia coli and 6.56 mm against Staphylococcus aureus bacteria.