Furan-based compounds are a new class of compounds characteristic of wide abundance, feasible availability, and environmental friendliness. Presently, polyimide (PI) is the best membrane insulation material in the world, which is widely used in the fields of national defense, liquid crystals, lasers, and so on. At present, most polyimides are synthesized using petroleum-based monomers bearing benzene rings, while furan-based compounds bearing furan rings are rarely used as monomers. The production of petroleum-based monomers is always associated with many environmental issues, and their substitution with furan-based compounds seems a solution to addressing these issues. In this paper, t-butoxycarbonylglycine (BOC-glycine) and 2,5-furandimethanol, bearing furan rings, were employed to synthesize BOC-glycine 2,5-furandimethyl ester, which was further applied for the synthesis of furan-based diamine. This diamine is generally used to synthesize bio-based PI. Their structures and properties were thoroughly characterized. The characterization results showed that BOC-glycine could be effectively obtained using different posttreatment methods. And BOC-glycine 2,5-furandimethyl ester could be effectively obtained by optimizing the accelerating agent of 1,3-dicyclohexylcarbodiimide(DCC) with either 1.25 mol/L or 1.875 mol/L as the optimum value. The PIs originated from furan-based compounds were synthesized and their thermal stability and surface morphology were further characterized. Although the obtained membrane was slightly brittle (mostly due to the less rigidity of furan ring as compared with benzene ring), the excellent thermal stability and smooth surface endow it a potential substitution for petroleum-based polymers. And the current research is also expected to shed some insight into the design and the fabrication of eco-friendly polymers.