Various genotypes of the hepatitis B virus (HBV) induce liver disease of distinct severity, but the underlying virological differences are not well defined. Huh7 cells were transfected with plasmids carrying 1.24-fold the HBV genome of different genotypes/subgenotypes (2 strains each for Aa/A1, Ae/A2, Ba/B2 and D; 3 each for Bj/B1 and C). HBV DNA levels in cell lysates, determined by Southern hybridization, were the highest for C followed by Bj/Ba and D/Ae (P < .01), and the lowest for Aa (P < .01), whereas in culture media, they were the highest for Bj, distantly followed by Ba/C/D and further by Ae/Aa (P < .01). The intracellular expression of core protein was more than 3-fold lower for Ae/Aa than the others. Hepatitis B e antigen (HBeAg) was excreted in a trend similar to that of HBV DNA with smaller differences. Secretion of hepatitis B surface antigen (HBsAg) was most abundant for Ae followed by Aa, Ba, Bj/C and remotely by D, which was consistent with mRNA levels. Cellular stress determined by the reporter assay for Grp78 promoter was higher for C and Ba than the other genotypes/subgenotypes (P < .01). Severe combined immunodeficiency mice transgenic for urokinase-type plasminogen activator (uPA/SCID), with the liver replaced for human hepatocytes, were inoculated with virions passed in mouse and recovered from culture supernatants. HBV DNA levels in their sera were higher for C than Ae by 2 logs during 4-7 weeks after inoculation. In conclusion, virological differences among HBV genotypes were demonstrated both in vitro and in vivo.