2019
DOI: 10.3390/math7080711
|View full text |Cite
|
Sign up to set email alerts
|

NP-Hardness of the Problem of Optimal Box Positioning

Abstract: We consider the problem of finding a position of a d-dimensional box with given edge lengths that maximizes the number of enclosed points of the given finite set P ⊂ R d , i.e., the problem of optimal box positioning. We prove that while this problem is polynomial for fixed values of d, it is NP-hard in the general case. The proof is based on a polynomial reduction technique applied to the considered problem and the 3-CNF satisfiability problem.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?