Induced pluripotent stem (iPS) cells have great potential for personalized regenerative medicine. Although several different methods for generating iPS cells have been reported, improvement of safety and efficiency is imperative. In this study, we tested the feasibility of using a triple tyrosine mutant AAV2 (Y444 + 500 + 730F) vector, designated AAV2.3m, to generate iPS cells. We developed a polycistronic rAAV2.3m vector expressing three reprogramming factors, Klf4, Oct4, and Sox2, and then used this vector to infect mouse adipose-derived mesenchymal stem cells (AT-MSCs) to induce the generation of iPS cells. We demonstrated that (1) the triple tyrosine mutant AAV2 vector is able to reprogram mouse adult adipose tissue-derived stem cells into the pluripotent state. Those rAAV2.3m-derived iPS (rAAV2.3m-iPS) cells express endogenous pluripotencyassociated genes including Oct4, Sox2, and SSEA-1, and form teratomas containing multiple tissues in vivo; (2) c-myc, an oncogene, is dispensable in rAAV2.3m-mediated cellular reprogramming; and (3) transgene expression is undetectable after reprogramming, whereas vector DNA is detectable, indicating that transgenes are silenced. These results indicated the rAAV vector may have some advantages in generating iPS cells.