Hepatitis C virus (HCV) is a member of the Flaviviridae family of enveloped, positive-strand RNA viruses (23). It is responsible for persistent infections in humans, with associated risk of chronic liver diseases, including cirrhosis and hepatocellular carcinoma. Nearly 3% of the global population is chronically infected with HCV, and there are no clinically proven vaccines. Antiviral therapeutic agents are at an early stage of clinical evaluation, and standard treatments (interferon and ribavirin combinations) are associated with suboptimal response rates and/or high incidence of side effects. Complicating the discovery of new therapies is the highly complex and incompletely understood nature of the viral life cycle. The HCV genome consists of a single strand of RNA of about 9,600 nucleotides encoding a polypeptide precursor of about 3,000 amino acids (26). Co-and posttranslational proteolytic cleavage of this precursor by cellular and viral enzymes yields structural proteins involved in viral assembly, along with nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B, which are required for membrane-associated RNA replication (14).Nonstructural protein NS5A is a critical component of HCV replication and is involved in several cellular processes, such as interferon resistance (3, 13) and apoptotic regulation (9). It is a phosphoprotein of 447 residues with three domains (35), and while no clear enzymatic functions have been assigned, it appears to function through interactions with other HCV proteins and host cell factors (17). Domain I (residues 1 to 213) contains a zinc-binding motif (35) and an amphipathic N-terminal helix which promotes membrane association (4, 12, 30), possibly through specific interaction of the helix with target membrane proteins (8). Domain II (residues 250 to 342) has regulatory functions, such as interactions with protein kinase PKR and PI3K (13), as well as NS5B (32); contains the interferon sensitivity-determining region (13); and appears to lack major elements of secondary structure (22). Recent studies have demonstrated that domain III (residues 356 to 447) plays a critical role in infectious virion assembly but not in RNA replication (1,34) and that the former role is modulated by phosphorylation within the domain (33). High-throughput screening of small-molecule inhibitors using HCV replicon cell systems has identified NS5A as a promising therapeutic target (31).A crystal structure of domain I lacking the amphipathic helix and spanning residues 25 to 215 showed two subdomains and a homodimeric association and was interpreted as having a potential role in RNA binding (36). Although specific binding to domain I was not described, RNA binding to full-length NS5A has been reported, using, for example, the 3Ј nontranslated region of HCV (15). Efforts in our laboratory to study the structure of NS5A have yielded an alternative arrangement of the domain I homodimer (residues 33 to 202) that differs substantially from that previously described. The observation that the NS5A do...