2020
DOI: 10.48550/arxiv.2003.09870
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

NSM Converges to a k-NN Regressor Under Loose Lipschitz Estimates

Abstract: Although it is known that having accurate Lipschitz estimates is essential for certain models to deliver good predictive performance, refining this constant in practice can be a difficult task especially when the input dimension is high. In this work, we shed light on the consequences of employing loose Lipschitz bounds in the Nonlinear Set Membership (NSM) framework, showing that the model converges to a nearest neighbor regressor (k-NN with k = 1). This convergence process is moreover not uniform, and is mon… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?