Abstract:Although it is known that having accurate Lipschitz estimates is essential for certain models to deliver good predictive performance, refining this constant in practice can be a difficult task especially when the input dimension is high. In this work, we shed light on the consequences of employing loose Lipschitz bounds in the Nonlinear Set Membership (NSM) framework, showing that the model converges to a nearest neighbor regressor (k-NN with k = 1). This convergence process is moreover not uniform, and is mon… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.