The latest biological findings discover that the motionless 'lock-and-key' theory is no longer applicable and the flexibility of both the receptor and ligand plays a significant role in helping understand the principles of the binding affinity prediction. Based on this mechanism, molecular dynamics (MD) simulations have been invented as a useful tool to investigate the dynamical properties of this molecular system. However, the computational expenditure prohibits the growth of reported protein trajectories. To address this insufficiency, we present a novel spatial-temporal pre-training protocol, PretrainMD, to grant the protein encoder the capacity to capture the time-dependent geometric mobility along MD trajectories. Specifically, we introduce two sorts of self-supervised learning tasks: an atom-level denoising generative task and a protein-level snapshot ordering task. We validate the effectiveness of PretrainMD through the PDBbind dataset for both linear-probing and fine-tuning. Extensive experiments show that our PretrainMD exceeds most state-of-the-art methods and achieves comparable performance. More importantly, through visualization we discover that the learned representations by pre-training on MD trajectories without any label from the downstream task follow similar patterns of the magnitude of binding affinities. This strongly aligns with the fact that the motion of the interactions of protein and ligand maintains the key information of their binding. Our work provides a promising perspective of self-supervised pre-training for protein representations with very fine temporal * The corresponding authors.Preprint. Under review.