High-resolution flow cytometry, using avian erythrocytes as an internal standard, was employed to study constitutive genome size variation of GX-phase nuclei of Physarurn polgcephalum strains during the macroplasmodial stage of their life cycle. Our results document a previously unknown extent of genome size variation and mixoploidy in this organism. The unimodal diploid strain Tu 291 displayed the largest genome of the strains tested; in contrast, the Colonia strain displayed only half of the Tu 291 G2-phase fluorescence, confirming its haploid nature. An additional strain, derived from a recent cross between Lu897 and Lu898 amoebae, must have arisen by selfing (propagation of only one of the parental genomes to the macroplasmodial stage), since its nuclei display close to the haploid GX-phase DNA content. The observation of a small fraction of corresponding diploid nuclei within the haploid population of this strain, while maintained as microplasmodia, supports the notion that meiosis in haploid strains may require the presence of diploid nuclei. Two of the descendants of the prototype haploid Colonia strain, which were kept for extended periods of time in submerse culture, proved to be near diploid and mixoploid. Polyploidization and subsequent loss of DNA thus seems to contribute to the extremes of genome size variation in Physarum. In addition to unimodal fluorescence distributions, a number of diploid strains displayed bi-and even trimodal distributions within harvests of a single G2-phase macroplasmodium. Analysis of these mixoploid strains by means of gaussian curve-fitting suggests that the smaller genome size differences in Phgsarum may arise in step-wise diminution of DNA in approximate units of 3 4 % of the original Tu 291 genome.