Plant organs originate from meristems where stem cells are maintained to produce continuously daughter cells that are the source of different cell types. The cell cycle switch gene CCS52A, a substrate specific activator of the anaphase promoting complex/ cyclosome (APC/C), controls the mitotic arrest and the transition of mitotic cycles to endoreduplication (ER) cycles as part of cell differentiation. Arabidopsis, unlike other organisms, contains 2 CCS52A isoforms. Here, we show that both of them are active and regulate meristem maintenance in the root tip, although through different mechanisms. The CCS52A1 activity in the elongation zone of the root stimulates ER and mitotic exit, and contributes to the border delineation between dividing and expanding cells. In contrast, CCS52A2 acts directly in the distal region of the root meristem to control identity of the quiescent center (QC) cells and stem cell maintenance. Cell proliferation assays in roots suggest that this control involves CCS52A2 mediated repression of mitotic activity in the QC cells. The data indicate that the CCS52A genes favor a low mitotic state in different cell types of the root tip that is required for meristem maintenance, and reveal a previously undescribed mechanism for APC/C mediated control in plant development.CDH1 ͉ cell differentiation ͉ endoreduplication ͉ quiescent center ͉ stem cells P lant growth and development depend on the persistent activity of meristems, allowing continuous postembryonic organogenesis. In the root tip, meristem maintenance is controlled by different mechanisms that involve the maintenance of stem cells in the root meristem (RM) and spatial control over mitotic exit at the RM-elongation zone (EZ) border.In the distal RM, stem cells are maintained in an undifferentiated state by the quiescent center (QC) cells (1). The QC represents a center of mitotic inactive cells resting in an extended G 1 phase (2). The stem cells around the QC divide according to strict spatial rules, and provide cell progenies that detach from the QC and differentiate into different root cell types (3). The auxin-PLETHORA (PLT) pathway provides positional information to set up the QC and surrounding stem cells whose activities depend on WOX5 and SHORT ROOT (SHR)-SCARECROW (SCR) transcription factors (4-7).As cells reach the RM-EZ border, they start to expand and terminally differentiate. Recently, it has been demonstrated that the spatial boundary of the RM and EZ is controlled by the rate of meristematic cell differentiation at this border (8). The transition involves exit from the mitotic cycle to the endocycle (9). In eukaryotes, endoreduplication (ER) onset requires inhibition of mitotic cyclin-dependent kinase (cdk) activities (10-12). This inhibition can be achieved by multiple mechanisms, but mostly by the degradation of mitotic cyclins by the anaphase promoting complex/cyclosome (APC/C) (13-15). The APC/C is an ubiquitin ligase that regulates cell cycle progression from metaphase to S phase by targeted degradation of numerous ce...