The neutron-rich isotopes of cadmium up to the N ¼ 82 shell closure have been investigated by highresolution laser spectroscopy. Deep-uv excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127 Cd and 129 Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11=2 À quadrupole moments. Remarkably, this mechanism is found to act well beyond the h 11=2 shell. DOI: 10.1103/PhysRevLett.110.192501 PACS numbers: 21.10.Ky, 21.60.Cs, 31.15.aj, 32.10.Fn When first proposed, the nuclear shell model was largely justified on the basis of magnetic-dipole properties of nuclei [1]. The electric quadrupole moment could have provided an even more stringent test of the model, as it has a very characteristic linear behavior with respect to the number of valence nucleons [2,3]. However, the scarcity of experimental quadrupole moments at the time did not permit such studies. Nowadays, regardless of experimental challenges, the main difficulty is to predict which nuclei are likely to display this linear signature. The isotopes of cadmium, investigated here, proved to be the most revealing case so far. Furthermore, being in the neighborhood of the ''magic'' tin, cadmium is of general interest for at least two additional reasons. First, theory relies on nuclei near closed shells for predicting other, more complex systems. Second, our understanding of stellar nucleosynthesis strongly depends on the current knowledge of nuclear properties in the vicinity of the doubly magic tin isotopes [4]. Moreover, specific questions concerning the nuclear structure of the cadmium isotopes require critical evaluation, such as shell quenching [5,6], sphericity [7], deformation [8,9], or whether vibrational nuclei exist at all [10]. Some of these points will be addressed here quite transparently, while others require dedicated theoretical work to corroborate our conclusions. In this Letter we report advanced measurements by collinear laser spectroscopy on the very neutron-rich cadmium isotopes. Electromagnetic moments in these complex nuclei are found to behave in an extremely predictable manner. Yet, their description goes beyond conventional interpretation of the nuclear shell model.The measurements were carried out with the collinear laser spectroscopy setup at ISOLDE-CERN. High-energy protons impinging on a tungsten rod produced low-to medium-energy neutrons inducing fission in a uranium carbide target. Proton-rich spallation products, such as cesium, were largely suppressed in this manner. Further reduction of surface-ionized isobaric contamination was achieved by the use of a quartz transfer line [11], which allowed the more volatile cadmium to diffuse out of the target while impurities were retained sufficiently long to decay. Cadmium atoms were laser ionized, accelerated to an energy of 30 keV, and mass separated. The ion beam was injected into a gas-filled radio-frequency Paul trap [12]...