2020
DOI: 10.1016/j.anucene.2019.107111
|View full text |Cite
|
Sign up to set email alerts
|

Nuclear Power Plant accident identification system with “don’t know” response capability: Novel deep learning-based approaches

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 28 publications
(2 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…It has the ability to standardize, serialize, mass produce, research, and develop a new generation of the intelligent nuclear industry. Therefore, applying DL technologies to all segments of the complete nuclear industry chain can promote the development of informatization, digitization, intelligence of the nuclear industry [51][52][53] . Among them, the nuclear power industry involves nuclear fuel supply, nuclear power equipment manufacturing, nuclear power engineering design and construction, nuclear power technical service and guarantee, nuclear spent fuel reprocessing, radioactive waste disposal, etc.…”
Section: Introductionmentioning
confidence: 99%
“…It has the ability to standardize, serialize, mass produce, research, and develop a new generation of the intelligent nuclear industry. Therefore, applying DL technologies to all segments of the complete nuclear industry chain can promote the development of informatization, digitization, intelligence of the nuclear industry [51][52][53] . Among them, the nuclear power industry involves nuclear fuel supply, nuclear power equipment manufacturing, nuclear power engineering design and construction, nuclear power technical service and guarantee, nuclear spent fuel reprocessing, radioactive waste disposal, etc.…”
Section: Introductionmentioning
confidence: 99%
“…Recently, the International Atomic Energy Agency (IAEA) has urged the nuclear community to integrate ML in the industry within the framework of emerging technologies, given its superior capability in handling big-data (IAEA, 2020). In fact, the potential of using ML technology has been explored to estimate some key figures of merit such as the power pin peaking factor (Bae et al, 2008), the wall temperature at critical heat flux (Park et al, 2020), the flow pattern identification (Lin, 2020), to detect anomalies and warn of equipment failure (Ahsan and Hassan, 2013;Chen and Jahanshahi, 2018;Devereux et al, 2019); to determine core configuration and core loading pattern optimization (Siegelmann et al, 1997;Faria and Pereira, 2003;Erdogan and Gekinli, 2003;Zamer et al, 2014;Nissan, 2019), to identify initiating events and categorize accidents (Santosh et al, 2003;Na et al, 2004;Lee and Lee, 2006;Ma and Jiang, 2011;Pinheiro et al, 2020;Farber and Cole, 2020) and to determine of key performance metrics and safety parameters (Ridlluan et al, 2009;Montes et al, 2009;Farshad Faghihi and Seyed, 2011;Patra et al, 2012;Young, 2019;Park et al, 2020;Alketbi and Diab, 2021), and in radiation protection for isotope identification and classification (Keller and Kouzes, 1994;Abdel-Aal and Al-Haddad, 1997;Chen, 2009;Kamuda and Sullivan, 2019), etc. However, it is worth noting that the application of ML in nuclear safety is still limited despite its potential to enhance performance, safety, as well as economics of plant operation (Chai et al, 2003) which warrants further research (Gomez Fernandez et al, 2017).…”
Section: Introductionmentioning
confidence: 99%