2021
DOI: 10.21203/rs.3.rs-858236/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Nuclear Respiratory Factor 1 Promotes The Growth of Liver Hepatocellular Carcinoma Cells Via E2F1 Transcriptional Activation

Abstract: Background Recent studies have shown that functional mitochondria are essential for cancer cells. Nuclear respiratory factor 1 (NRF1) is a transcription factor that activates mitochondrial biogenesis and the expression of the respiratory chain, but little is known about its role and underlying mechanism in liver hepatocellular carcinoma (LIHC). Methods NRF1 expression was analyzed via public databases and 24 paired LIHC samples. Clinical-pathological information and follow-up data were collected from 165 patie… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 36 publications
0
1
0
Order By: Relevance
“…Some lncRNAs were found to form complex with NRF1 to activate mitochondrial biogenesis in HCC [55] and colorectal cancer patients [56]. NRF1 was also found to activate E2F1 as a transcription factor to promote HCC proliferation by a ChIP-seq analysis for NRF1 target genes [57]. Similarly, the knock-down of TFAM could promote cancer progression according to bioinformatic databases of 18 head and neck cancer cases [58] as well as ovarian cancer [59].…”
Section: Mitochondrial Dysfunction and Cancer Based On Big Data Analysismentioning
confidence: 99%
“…Some lncRNAs were found to form complex with NRF1 to activate mitochondrial biogenesis in HCC [55] and colorectal cancer patients [56]. NRF1 was also found to activate E2F1 as a transcription factor to promote HCC proliferation by a ChIP-seq analysis for NRF1 target genes [57]. Similarly, the knock-down of TFAM could promote cancer progression according to bioinformatic databases of 18 head and neck cancer cases [58] as well as ovarian cancer [59].…”
Section: Mitochondrial Dysfunction and Cancer Based On Big Data Analysismentioning
confidence: 99%