Hydroxyl-functionalized ionic liquids (ILs) represent a new interesting class of ILs where hydrogen bonds (HBs) play an important role: here, "typical" HBs between cations and anions (ca) are competing with "atypical" HBs connecting pairs of cations (cc). We study the equilibrium and kinetics of (cc) and ( c a ) H B s i n 1 -( n -h y d r o x y a l k y l ) -p y r i d i n i u m b i s -(trifluoromethlysulfonyl)imide [HOC n Py][NTf 2 ] ILs by means of molecular dynamics simulations. (cc) HBs are found to be between 0.96 and 3.76 kJ mol −1 stronger than their (ca) counterparts, depending on the alkyl chain length. HB lifetimes and kinetics are analyzed by means of HB population and reactive flux correlation functions. Essentially, four different HB lifetimes have to be considered, spanning about 3 orders of magnitude, each valid in its own right and each associated with different aspects of HB breaking and HB reformation. The long-time limiting behavior of the HB population correlation function is controlled by diffusion of the ions and can be quantitatively described by analytical expressions. The short-time HB behavior is tied to the localized dynamics of the hydroxyl group exploring its local solvation environment. A minimalist kinetic two-domain model is introduced to realistically describe the time evolution of the HB population correlation function for both (ca) and (cc) HBs over 5 orders of magnitude. By employing the reactive flux method, we determine the kinetics of HB breaking, unaffected by diffusion processes. We determine both, the ultrafast upper boundary and the average rate of HB breaking, allowing recrossing-events during the transient relaxation time period. For sufficiently long alkyl chains, all those computed HB lifetimes indicate a higher kinetic stability of (cc) HBs over (ca) HBs; for short chains, it is vice-versa.