The reactions between α-, γ-ethylenediaminemethyl trimethyl-ketoxime silane (α-, γ-EAMOS) and H2O were investigated on the geometries of stationary points, the reaction pathway (IRC), thermodynamic and kinetic analysis by density functional theory (DFT) at the B3LYP/6-311G (d, p) level. Interestingly, the results showed that the hydrolysis activity of α-EAMOS is higher than that of γ-EAMOS, due to the influence of an amino substituent in position α-C on silicon. α-EAMOS can be used as a superior crosslinker for room temperature vulcanized (RTV) silicone rubber to achieve rapid crosslinking without a toxic catalyst. Besides, compared with the reaction between α-EAMOS and H2O, the reactivity between α-EAMOS and hydroxy siloxane (HO–Si(CH3)2–OSiH3) was discussed. Particularly, it revealed that the deep vulcanization of RTV silicone rubber is difficult.