DNA double-strand break (DSB) repair is not only key to genome stability but is also an important anticancer target. Through an shRNA library-based screening, we identified ubiquitin-conjugating enzyme H7 (UbcH7, also known as Ube2L3), a ubiquitin E2 enzyme, as a critical player in DSB repair. UbcH7 regulates both the steady-state and replicative stress-induced ubiquitination and proteasome-dependent degradation of the tumor suppressor p53-binding protein 1 (53BP1). Phosphorylation of 53BP1 at the N terminus is involved in the replicative stress-induced 53BP1 degradation. Depletion of UbcH7 stabilizes 53BP1, leading to inhibition of DSB end resection. Therefore, UbcH7-depleted cells display increased nonhomologous end-joining and reduced homologous recombination for DSB repair. Accordingly, UbcH7-depleted cells are sensitive to DNA damage likely because they mainly used the errorprone nonhomologous end-joining pathway to repair DSBs. Our studies reveal a novel layer of regulation of the DSB repair choice and propose an innovative approach to enhance the effect of radiotherapy or chemotherapy through stabilizing 53BP1.DNA damage response | UbcH7 | 53BP1 | protein degradation | DSB repair P rompt response to double-strand breaks (DSBs) caused by, for example, ionization radiation (IR), requires sequential and coordinated assembly of DNA damage response (DDR) proteins at damage sites (1). Recent research findings reveal key roles of the tumor suppressor p53-binding protein 1 (53BP1) and BRCA1 in the decision making of DSB repair. 53BP1, together with Rif1, suppress BRCA1-dependent homologous recombination (HR), thereby promoting nonhomologous end-joining (NHEJ) in G1 phase (2-6). Conversely, BRCA1 antagonizes 53BP1/Rif1, favoring HR in S and G2 phases (7,8). In the absence of BRCA1 or with enhanced retention of 53BP1 at DSB sites, cells primarily use the error-prone NHEJ to repair DSBs throughout the cell cycle, which leads to gene rearrangement, cell death, and increased sensitivity to anticancer therapies (9-11). Consistently, BRCA1-null mice are early embryonic lethal (12, 13) and codepletion of TP53BP1 rescued the lethality phenotype of BRCA1-null mice (12)(13)(14).Low expression level of 53BP1 was found to be associated with poor clinical outcome in triple negative breast cancer patients with BRCA1 mutation (12, 15), as well as resistance to genotoxins and poly(ADP-ribose) polymerase inhibitors (12,16,17). This finding is probably because loss of 53BP1 restored HR and promoted cell survival (12-14). Reduced expression of 53BP1 was also observed in tumors from the brain (18), lymph node (19), and pancreas (20). These data indicate that loss of 53BP1 might be a common mechanism for advanced tumors to evade from radiotherapy or chemotherapy. However, molecular mechanisms controlling the protein level of 53BP1 remain less well understood.Here we show that UbcH7, an E2 enzyme involved in the ubiquitin (Ub) pathway, controls the protein stability of 53BP1, thereby determining the DSB repair choice. Loss of UbcH7 sta...