This study presents an integrated modeling system for the evaluation of the quantity and quality of water resources of coastal agricultural watersheds. The modeling system consists of coupled and interrelated models, including (i) a surface hydrology model (UTHBAL), (ii) a groundwater hydrology model (MODFLOW), (iii) a crop growth/nitrate leaching model (REPIC, an R-ArcGIS-based EPIC model), (iv) a groundwater contaminant transport model (MT3DMS), and (v) a groundwater seawater intrusion model (SEAWAT). The efficacy of the modeling system to simulate the quantity and quality of water resources has been applied to the Almyros basin in Thessaly, Greece. It is a coastal agricultural basin with irrigated and intensified agriculture facing serious groundwater problems, such as groundwater depletion, nitrate pollution, and seawater intrusion. Irrigation demands were estimated for the main crops cultivated in the area, based on precipitation and temperature from regional weather stations. The models have been calibrated and validated against time-series of observed crop yields, groundwater table observations, and observed concentrations of nitrates and chlorides. The results indicate that the modeling system simulates the water resources quantity and quality with increased accuracy. The proposed modeling system could be used as a tool for the simulation of water resources management and climate change scenarios.