In this paper we address some of the most fundamental questions regarding the differentiability structure of locally Lipschitz functions defined on separable Banach spaces. For example, we examine the relationship between integrability, D-representability, and strict differentiability. In addition to this, we show that on any separable Banach space there is a significant family of locally Lipschitz functions that are integrable, D-representable and possess desirable differentiability properties. We also present some striking applications of our results to distance functions.
Academic Press