Abstract. We consider a self-convolutive recurrence whose solution is the sequence of coefficients in the asymptotic expansion of the logarithmic derivative of the confluent hypergeometic function U (a, b, z). By application of the Hilbert transform we convert this expression into an explicit, non-recursive solution in which the nth coefficient is expressed as the (n − 1)th moment of a measure, and also as the trace of the (n − 1)th iterate of a linear operator. Applications of these sequences, and hence of the explicit solution provided, are found in quantum field theory as the number of Feynman diagrams of a certain type and order, in Brownian motion theory, and in combinatorics.