Photoresponse Non-Uniformity (PRNU) is becoming particularly relevant within digital media forensics, as a means to effectively determine the source camera of a given image. Most of the practical applications in digital media forensics involve dealing with highly sensitive data whose content must be protected. In this context, several secure frameworks have been proposed to perform PRNU-based camera attribution while preserving the privacy of both the testing images and the PRNU fingerprint. The two most recent and relevant ones, independently proposed in 2018, are (a) Mohanty et al.’s, who combine the use of a trusted environment (ARM TrustZone) to compute the PRNU fingerprint, with the Boneh-Goh-Nissim (BGN) cryptosystem to perform the matching, and (b) Pedrouzo-Ulloa et al.’s, who propose a more flexible solution which can be fully implemented on a general purpose architecture and does not require access to a trusted environment. In this work, we revisit the existing frameworks and propose a general formulation for PRNU matching based on lattice cryptosystems which improves on the BGN-based solution in terms of efficiency, flexibility and privacy.